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Purpose. To devise experimental and computational models to pre-
dict aqueous drug solubility.
Methods. A simple and reliable modification of the shake flask
method to a small-scale format was devised, and the intrinsic solu-
bilities of 17 structurally diverse drugs were determined. The experi-
mental solubility data were used to investigate the accuracy of com-
monly used theoretical and semiexperimental models for prediction
of aqueous drug solubility. Computational models for prediction of
intrinsic solubility, based on lipophilicity and molecular surface areas,
were developed.
Results. The intrinsic solubilities ranged from 0.7 ng/mL to 6.0 mg/
mL, covering a range of almost seven log10 units, and the values
determined with the new small-scale shake flask method agreed well
with published solubility data. Solubility data computed with estab-
lished theoretical models agreed poorly with the experimentally de-
termined solubilities, but the correlations improved when experimen-
tally determined melting points were included in the models. A new,
fast computational model based on lipophilicity and partitioned mo-
lecular surface areas, which predicted intrinsic drug solubility with a
good accuracy (R2 of 0.91 and RMSEtr of 0.61) was devised.
Conclusions. A small-scale shake flask method for determination of
intrinsic drug solubility was developed, and a promising alternative
computational model for the theoretical prediction of aqueous drug
solubility was proposed.

KEY WORDS: shake flask method; drug solubility; molecular sur-
face area; solubility prediction.

INTRODUCTION

Combinatorial chemistry and high-throughput screening
techniques have increased the number of candidate drugs
produced annually. Unfortunately, these techniques do not
generally provide compounds with optimal biopharmaceuti-
cal and pharmacokinetic properties. The drug candidates are
often poorly soluble in water, which results in low drug con-
centrations in the gastrointestinal fluids and, hence, unaccept-
ably low drug absorption (1). Therefore, studies of drug solu-
bility early in the drug development process are motivated.
Indeed, several experimental methods (1–3) and computa-
tional models (4,5) of varying accuracy and complexity have
been developed for the prediction of aqueous drug solubility.

The most reliable and commonly used experimental
method for determining intrinsic aqueous drug solubility is
the shake flask method (6,7). However, this method is time-
consuming and a single solubility experiment can be ongoing
for several days to weeks, which limits its usefulness (6,8).
Moreover, accurate determination of lipophilic, insoluble
substances may be troublesome because of loss of substance
in the filtration step (6). In addition, the experiments are
traditionally performed on a large scale, and large amounts
(grams) of substances are required. However, preliminary,
solubility studies in a microtiter plate format have been
reported (9).

A more rapid, but less reliable, alternative to the shake
flask method is based on precipitation of the drug after serial
dilution of DMSO stock solution (1). This turbidimetric
method is used as a screening tool in the drug discovery pro-
cess, because the compounds generated by combinatorial
chemistry are stored in DMSO stock solutions. It is rapid at
the expense of accuracy, and, because the solubility is deter-
mined from DMSO solutions, no consideration is taken of the
influence of the solid state. Rapid and reliable methods to
determine drug solubility on a small-scale basis are, therefore,
warranted.

Recently, a variety of computational models have been
devised to predict the aqueous solubilities of homologous and
heterologous series of compounds. Simple linear regression
models using physicochemical descriptors for size, lipophilic-
ity, and/or hydrogen-bonding capacity (5,10–12) as well as
more complex neural network models based on, e.g., electro-
topologic descriptors (13,14) have resulted in fairly good pre-
dictions. Unfortunately, the data sets used to build the com-
putational models generally contain only a small number of
druglike molecules. Therefore, the usefulness of these models
in drug discovery remains to be shown.

Uncertainties in the experimental data used may contrib-
ute to large errors in the solubility predictions made by com-
putational models (11,15). We have generated our own reli-
able solubility data and used these data to predict aqueous
drug solubility from molecular descriptors. We refined the
shake flask method for rapid and reliable solubility determi-
nations. The filtration step was replaced by an ultracentrifu-
gation step to minimize loss of substance and sample volumes.
Furthermore, the suspension volumes were reduced to limit
the consumption of compounds to the microgram range and
to be readily adaptable to a microtiter plate format. We used
the solubility data obtained to evaluate available theoretical
and semiexperimental models for prediction of aqueous drug
solubility. Finally, we developed a new computational model
that is mainly based on lipophilicity and non-polar surface
area descriptors.

MATERIALS AND METHODS

Selection of Drugs

Seventeen structurally diverse compounds that were cho-
sen so that a number of physicochemical properties, such as
size, lipophilicity, and melting point, covered a large range
were studied (Fig. 1) (Table I). Both protolytes and non-
protolytes were investigated. The approximate aqueous solu-
bilities of these compounds were predicted on the basis of
their octanol-water partition coefficient and molecular
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weights (10). The range of the compounds predicted as the
least soluble and the most soluble in water covered more than
seven log10 units. Acyclovir, ciprofloxacin, SB209670, and
SKF105657 were gifts from SmithKline Beecham (Philadel-
phia, PA). All other compounds were purchased from Sigma
(St. Louis, MO). Alprenolol, amiloride, prazosin, and pro-
pranolol were used as the corresponding HCl salts.

Solid-State Characterization

The crystallinity, purity, water content, and melting point
of each compound were determined by differential scanning
calorimetry (DSC) using a Mettler DSC 20 TC10A/15 (Swit-
zerland). Insufficient amounts of SB209670 were available for
DSC analysis. None of the compounds underwent glass tran-
sitions or crystal transitions during the DSC experiment,
which confirmed that all compounds were crystalline. Thus,
the solubility was determined of the most stable form of the
solid state. Amiloride was an exception: amiloride dihydrate
was used, and the crystal water may have influenced the solu-
bility value.

Solubility Studies by Shake Flask

Each drug was added in excess to 1000, 500, 200, 100, or
50 mL Milli-Q water in a test tube at room temperature (22.5

± 1°C), and the test tubes were placed on a plate shaker,
which agitated the suspensions at 300 rpm. Compounds used
as HCl salts were studied with different amounts of excess
solid present at the establishment of the equilibrium, to evalu-
ate if the solubility values determined were affected by the
salt. The pH of each drug suspension was adjusted by using
1 M HCl or 1 M NaOH to a value at least 1 pH unit below
(acids) or above (bases) the pKa value of the drug. This al-
lowed the solubilities of uncharged compounds to be deter-
mined. The pH values of ampholyte suspensions were ad-
justed to the isoelectric point of the compound to determine
the solubilities of the zwitterionic species. Samples were with-
drawn after 24, 48, and 72 h for drugs that were expected to
dissolve rapidly and at 24, 72, and 144 h for drugs that were
expected to dissolve slowly. The samples were centrifuged in
an Eppendorf centrifuge model 5043 at 23,000g for 15 min to
separate the solid material from the solution. The tempera-
ture of the samples remained at 22.5 ± 1°C during the cen-
trifugation. The supernatants were stored at −20°C pending
analysis with reversed phase HPLC. Acetylsalicylic acid was
hydrolyzed after 24 h at the pH used (pH 2), and results from
time points after this could not be obtained. Therefore, only
the 24 h value is reported. Two compounds, SKF105657 and
SB209670, showed no detectable solubility in water with use
of the small-scale shake flask (SSF) method and HPLC analy-
sis; therefore, these compounds were studied by using metha-

Fig. 1. Chemical structures of the compounds studied. 1. acetylsalicylic acid, 2. acyclovir, 3. alprenolol, 4. amilo-
ride, 5. cimetidine, 6. ciprofloxacin, 7. griseofulvin, 8. hydrochlorothiazide, 9. hydrocortisone, 10. ketoprofen, 11.
pindolol, 12. prazosin, 13. probenecid, 14. propranolol, 15. SB209670, 16. SKF105657, 17. testosterone.
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nol as cosolvent. Briefly, the solubility was determined at four
different concentrations of methanol in water (11.4, 17.4, 23.5,
and 29.8% w/w, n 4 3). After 24 h, the suspensions were
centrifuged and analyzed by HPLC. The intrinsic solubilities
were then determined by linear regression and extrapolation
to aqueous solubility (0% w/w methanol) (16,17). The linear
regression gave coefficients of determination (R2) of 0.98 and
0.99 for SB209670 and SKF105657, respectively.

Molecular Descriptors

Lipophilicity was calculated by using the ClogP program
from BioByte Corp. (Claremont, CA), and the numbers of
hydrogen bond acceptors, the numbers of hydrogen bond do-
nors, and the total number of hydrogen bonds were calculated
according to Ren et al. (18). Monte Carlo conformational
analysis (19) was performed by using the BatchMin program
and the MM2 force field, as implemented in MacroModel
version 5.0 (20). The conformational analysis of cimetidine
was performed by using the MMFF force field instead of
MM2, because the latter does not contain the necessary pa-
rameters. In this case, MacroModel version 6.5 was used. The
conformational analysis was performed in simulated water
with the compounds in their unionized state. Molecular sur-
face areas were calculated from the results of the conforma-
tional analysis by using an in-house program, MAREA (21).

The composite property polar surface area (PSA) was
defined as the surface area occupied by oxygen and nitrogen,
and hydrogen atoms bound to these heteroatoms. The com-
posite property non-polar surface area (NPSA) was defined
as the total surface area minus the PSA. In addition, these
composite descriptors were divided into the partitioned total

surface area descriptors (PTSA) (22,23). Briefly, a molecule
has a number of PTSAs, each one of which corresponds to a
certain atom type. For example, the PSA originating from
oxygen atoms can be partitioned into the surface areas of
single-bonded oxygen, double-bonded oxygen, and hydrogen
atoms bound to single-bonded oxygen atoms.

The surface areas were calculated both as absolute and
relative numbers compared to the total surface area (i.e., PSA
and %PSA). Both static and dynamic surface areas were cal-
culated. Dynamic surface areas were calculated according to
a Boltzmann distribution at 22.5°C, where every low-energy
conformation (E # 2.5 kcal) is weighted by its probability of
existence (24,25). Static surface areas were calculated for the
global minimum conformation.

Analytic Methods

Drug concentrations were analyzed by using a reversed
phase HPLC system that consisted of the following compo-
nents: a PerkinElmer isocratic LC pump 250, a PerkinElmer
advanced LC sample processor ISS-200, and a Spectra-
Physics UV100 detector. The analytical columns used were a
Hichrom Partisil ODS3 (10 × 3.2 mm) guard column and a
Becker Ultrasphere ODS (250 × 5.6 mm) analysis column,
both with a mean particle size of 5 mm. The composition of
the mobile phases were designed to allow the detection of the
compound within 10 min.

Data Analysis

The solubility determinations were performed in tripli-
cates on at least two occasions. Values are expressed as means

Table I. Aqueous Solubilities and Physicochemical Properties of the Compounds Studieda

Substance 24 h
So(mg/mL)

72 h lit. values
Mw

(g/mol) ClogPoct #Htot

PSA
(Å2)

NPSA
(Å2) pKa

b
mp

(°C)

SKF105657 0.0007 ± 0.0002c n.d.d 399.6 5.04 9 70 414 5.4 254
SB209670 0.088 ± 0.025c n.d.d 520.5 3.64 20 134 448 3.9, 5.6 n.d.g

Prazosin 3.1 ± 1.1 3.2 ± 1.4 383.4 1.50 15 106 342 7.0 285
Probenecid 3.8 ± 0.8 3.6 ± 0.8 285.4 3.37 10 75 270 3.3 198
Griseofulvin 4.6 ± 0.3 5.2 ± 0.9 6.6 352.8 1.75 12 77 316 n.a. 219
Testosterone 22 ± 6 18 ± 3 24 288.4 3.22 5 42 315 n.a. 153
Pindolol 29 ± 3 33 ± 2 248.3 1.67 9 58 282 9.6 170
Propranolol 30 ± 4 31 ± 2 259.4 2.75 7 40 316 9.5 162
Ciprofloxacin 60 ± 5 54 ± 7 86 331.4 −1.93 11 79 293 6.3, 8.5 266
Ketoprofen 85 ± 4 94 ± 1 51 254.3 2.76 7 61 260 4.0 93
Amiloride 191 ± 51 150 ± 12 229.6 −0.79 17 152 79 8.7 291, 299
Hydrocortisone 207 ± 88 294 ± 14 285 362.5 1.70 13 89 311 n.a. 223
Aprenolol 377 ± 28 367 ± 34 249.3 2.65 7 39 324 9.5 109
Hydrochlorothiazide 587 ± 8.5 595 ± 40 609 297.7 −0.40 15 132 133 7.9, 9.2 267
Acyclovir 1170 ± 86 1213 ± 66 1400 225.2 −2.30 15 128 134 2.4, 9.2 255, 265
Acetylsalicylic acid 3198 ± 228 n.d.e 3405 180.2 1.02 9 44 196 3.5 142
Cimetidine 4945 ± 356 6046 ± 72f 252.3 0.35 9 86 243 7.1 141

a Aqueous solubilities at 24 h and 72 h (So), lipophilicity (ClogPoct), number of hydrogen bonds (#Htot), dynamic surface areas (PSA and
NPSA) and melting point (mp) were obtained as described in Materials and Methods. Literature values given for solubility were used for
evaluation of the SSF method (33).

b For compounds that are nonprotolytes, the pKa value is nonapplicable (n.a.).
c The solubility has been determined by using methanol as cosolvent as described in Materials and Methods.
d Not determined. The end point was set to 24 h in the cosolvent determinations.
e Not determined at 72 h because of time-dependent hydrolysis.
f A statistically significant difference was obtained between the 24 and 72 h solubility determinations (p < 0.05).
g Not determined because insufficient quantities of the substance were available to allow analysis of the compound with DSC.
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± 1 SD (Table I). ANOVA was used to test whether the
difference between two mean values was statistically signifi-
cant (p < 0.05). The coefficient of determination (R2) was
used to assess the goodness of fit of linear regressions when
comparing methods of measuring solubility and when build-
ing predictive models using linear or multilinear regression.

Principal component analysis (PCA) (26) and partial
least squares projection to latent structures (PLS) (27) were
performed in Simca (28). The data set was divided into a
training set and a test set of 12 and 5 compounds, respectively,
by PCA. The training set was selected to cover a maximum
range in descriptor space, which was achieved by selecting the
extreme values from the first three components of the PCA.
The test set was compiled of alprenolol, griseofulvin, keto-
profen, pindolol, and probenecid and was representative for
the training set used. Correlations between the descriptors
and solubilities were established by PLS. The descriptors
were centered and scaled to unit variance. The numbers of
PLS components computed were assessed by Q2, the “leave-
one-out” cross-validated R2. Only PLS components resulting
in a positive Q2 were computed. The models were refined
through stepwise selection of the descriptors. If the exclusion
of the least important descriptor resulted in a more predictive
model (higher Q2), then that descriptor was permanently left
out of the model. The descriptor selection procedure was re-
peated until no further improvement of the model was achieved.
The predictive power of the models established was assessed
by the root-mean-square error of the training set (RMSEtr)
and the test set (RMSEte), respectively. A RMSEte of <1 log10

unit was regarded as acceptable for our small data set.

RESULTS AND DISCUSSION

We have developed an accurate small-scale method for
determination of aqueous drug solubility. The method was
successfully used in determinations of aqueous solubility of a
set of 17 structurally diverse drugs, whose physicochemical
properties and solubilities covered a wide range. We used the
solubilities determined by our method to investigate the ac-
curacies of established theoretical and semiexperimental
computational models for predicting aqueous solubility,
and we propose a new model for prediction of aqueous drug
solubility.

Solubilities ranging from 0.7 ng/mL to 6.0 mg/mL, i.e.,
almost 7 log10 units, could be determined with the new
method (Table I). No effect of the HCl salt on the intrinsic
solubility value was seen for the four compounds that were
used as HCl salts, as assessed by different amounts of solid
present at equilibrium.

The dissolving process was rapid in most cases, and the
solubility values reached a plateau within 24 h. However, the
kinetic behaviors of cimetidine and hydrocortisone differed
from those of the other 15 substances. Cimetidine showed
dissolution rate-limited kinetics and reached its solubility pla-
teau after 48 h. The experimental values from hydrocortisone
at 24 h had a much higher standard deviation than the results
from 72 h; the latter results were considered more reliable
(Table I). A possible explanation for this result may be that
several crystal forms of hydrocortisone are taking part in the
establishment of the solubility equilibrium. This could be
achieved if hydrocortisone dissolves and precipitates several
times in an oscillated manner, before the equilibrium is es-

tablished. Thus, at early time points, several precipitated crys-
tal forms, with different aqueous solubilities, interact with
water, and the solubility value determined will have a larger
variability. Further investigation of this issue was outside the
scope of this article. However, the data analysis indicates that
it is generally not necessary to perform solubility experiments
for longer than 24 h, provided that the deviations discussed
above are accepted.

The measured aqueous solubilities of eight compounds
were compared with previously published solubility values
from the traditional shake flask method (Fig. 2a). The agree-
ment between the values obtained by the two methods was
excellent (R2 4 0.98, RMSE of 0.13 log unit). This clearly
shows that the SSF method is as accurate as the traditional
shake flask method.

Studies of the effect of sample volume showed that in-
trinsic solubility values can be determined in volumes as small
as 50 mL (Fig. 2b). No statistically significant differences were
observed in intrinsic solubility in the volume range 50–1000
mL and the SDs were <10%. We conclude that the SSF
method can be used to determine intrinsic solubilities of sol-
ids using volumes that are suitable for the 96-well microtiter
plate format. At this scale, only microgram quantities of
samples are needed to determine the solubility accurately.
Moreover, the microtiter plate format allows the solubility
determinations to be automated, resulting in a higher
throughput.

Fig. 2. Development of the small-scale shake flask method (SSF).
(a) Correlation between the modified SSF method and the traditional
large-scale shake flask method (33). (b) Determinations of aqueous
solubility of pindolol (white columns) and probenecid (black col-
umns) in volumes between 1000 and 50 mL.
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We used our experimental results to investigate the ac-
curacy of four simple and commonly used models for predic-
tion of aqueous solubility (10,29,30). These models are based
on simple physicochemical descriptors, and they were origi-
nally built by using data sets of compounds that are not drug-
like. Therefore, it was not surprising that the original models
predicted the solubilities of the 17 substances poorly. For
instance, using the equation derived by Yalkowsky and Val-
vani gave the best prediction of the four models tested. This
prediction is made from lipophilicity (ClogP) and melting
point (30) and resulted in a correlation with R2 of 0.67 and
RMSE of 1.27 for the 17 compounds. Therefore, we used our
data set to build new models based on these descriptors. The
results are summarized in Table II (models 1, 2, 6, and 7).
Lipophilicity was the most important molecular property for
predicting the solubility of a compound, and it was necessary
to include a solid-state parameter to obtain acceptable mod-
els. This finding is in agreement with previous publications
(29,30). The linear combination of ClogP and melting point
now yielded a better model with R2 of 0.85, RMSEtr of 0.74,
and a RMSEte of 0.66. These results show that non-druglike
compounds cannot be used to predict the aqueous solubilities
of druglike molecules accurately. Furthermore, the models
improved significantly if the experimentally derived solid-
state parameter, the melting point, was included in the calcu-
lations. Therefore, we investigated whether an advanced
purely theoretical model containing no experimentally deter-
mined properties gave better results. QikProp, a recently in-
troduced commercial software, predicts solubility solely from
theoretical descriptors calculated from the molecular struc-
ture (31). QikProp predicted aqueous solubilities for the sub-
stances in our test set poorly, with an RMSEte of 1.92 (Table
II, model 3). In summary, these investigations show that fur-
ther development of computational models for prediction of
aqueous drug solubility is required.

Molecular surface descriptors were recently found to be
of importance for the prediction of drug solubility from
Monte Carlo simulations (5). Therefore, our initial approach

was to investigate composite molecular surface area proper-
ties such as total surface area (SA), nonpolar (NPSA), and
polar (PSA) surface areas as descriptors for aqueous drug
solubility. A rough model was established after linear combi-
nation of the ClogP, PSA, and NPSA. When exchanging
the PSA for the melting point, the model was significantly
improved (Table II, models 4 and 8, respectively).

Our group recently showed that partitioned total surface
area (PTSA) can provide a better predictive model for mem-
brane permeability than composite surface areas such as PSA
(22). These promising results encouraged us to study whether
PTSA could be used to predict aqueous solubility. An initial
input matrix was constructed, which contained all of the de-
scriptors obtained (ClogP, PTSAs, composite surface areas,
number of hydrogen bond donors, number of hydrogen bond
acceptors, and total number of hydrogen bonds), and a step-
wise selection of the important descriptors for solubility was
performed by PLS. The best computational model was
obtained from ClogP, PTSAs, and composite surface areas
(Fig. 3a). This model gave R2 of 0.91, RMSEtr of 0.61, and
RMSEte of 0.90 (Table II, model 5). The model was based on
two principal components, and the remaining descriptors af-
ter the variable selection are shown in Table III. The PLS
analysis showed that properties that are negatively correlated
with solubility, such as size, lipophilicity, and non-polar at-
oms, are the most important for solubility predictions of this
data set. Only one hydrogen bond descriptor (surface area of
hydrogen bound to nitrogen atoms) remained after the de-
scriptor selection. This result is in contrast to previous publi-
cations that have shown that hydrogen bond descriptors im-
prove solubility prediction models (5,11).

Static surface area can be computed rapidly, whereas
dynamic surface area is computationally more demanding.
We investigated the effect of using these two types of area on
the accuracy of the model. The accuracy of the model was not
affected when the Boltzmann distributed, dynamic surface
areas were replaced with the static surface area calculated for
the global minimum conformation (R2

dyn 4 0.91, RMSEdyn,tr

Table II. Predictive Power of the Devised Modelsa

Model Descriptors Method Rtr
2 RMSEtr RMSEte

Theoretical 1 ClogP LR 0.53 1.36 1.24
2 ClogP, MW MLR 0.78 0.97 0.54
3 # hydrogen bonds,

interaction energy, size
MLR — — 1.92

4 ClogP, NPSA, PSA MLR 0.76 0.99 0.66
5 ClogP, PTSA, composite

SA
PLS 0.91 0.61 0.90

Semiexperimental 6 ClogP, mp MLR 0.85 0.74 0.66
7 ClogP, MW, mp MLR 0.85 0.89 0.59
8 ClogP, NPSA, mp MLR 0.90 0.60 0.70
9 ClogP, PTSA, composite

SA, mp
PLS 0.91 0.55 0.80

a The predictive power of original models (1–3, 6, and 7) and the models developed in this work
(4, 5, 8, and 9). The established models were evaluated by building new models for the data set by using
the descriptors found to be of importance in the original publications. The training set (tr) consisted
of 12 compounds (11 compounds in the models including melting point) and the test set (te) of
5 compounds. QikProp (model 3) has been evaluated by prediction of the test set only, because the
model implemented in the QikProp software has been trained on a different data set. The methodology
used in the models established were linear regression (LR), multilinear regression (MLR), and partial
least square projection to latent structures (PLS). Original models are reviewed in Refs. 10, 29–31.
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4 0.61 compared to R2
stat 4 0.92, RMSEstat,tr 4 0.57). Thus,

calculation of dynamic surface areas was not necessary for
this heterogenous data set. However, the drugs in our data set
have a limited flexibility, and dynamic surface areas may be
needed to provide good models for data sets of more flexible
compounds (32).

The influence of the solid state on the solubility was
investigated by using a semiexperimental PLS model combin-
ing the experimentally determined melting point with the
theoretically calculated descriptors. A model based on three
principal components was achieved (Fig. 3b), resulting in R2

of 0.91, RMSEtr of 0.55 and RMSEte of 0.80 (Table II, model
9). The descriptors were arranged as shown in Table III. It

was surprising that the inclusion of the melting point only
improved the model marginally, suggesting that this descrip-
tor is partly accommodated in the PTSAs. Preliminary com-
putational modeling of the melting point supports this hy-
pothesis (data not shown). Although the improvement in the
prediction is small, the melting point is the second most im-
portant descriptor in this semiexperimental model, and the
weighting of lipophilicity is higher than in the corresponding
theoretical model (Table III). We speculate that the higher
weighting of lipophilicity may compensate for the melting
point that is mainly reflecting polar, hydrophilic groups.
Hence, lipophilicity is needed to correct the balance between
hydrophobic and hydrophilic descriptors. This finding is sup-
ported by the fact that the only molecular hydrogen bond
descriptor included in both models is given less weight in the
prediction when melting point is included as a descriptor. In
summary, the results suggest that accurate predictive models
for solubility can be developed by using rapidly calculated
descriptors only. The findings in this article, that non-polar
descriptors and the size of the molecule can be used to predict
solubility, must be further investigated to address the issue of
general application. Investigations of larger and even more
structurally diverse druglike data sets will show if models
based on PTSAs will be as successful as models devised from
e.g., electrotopologic descriptors (13).

In conclusion, we have modified the shake flask method
to allow for reliable measurements of solubility in a small-
scale format. Solubility data for a structurally diverse set of
drugs generated with this method was used to evaluate com-
mon models used for prediction of aqueous solubility. These
models were not as good in predicting the solubilities of our
druglike molecules, as they were in predicting the solubilities
of the original training sets. We attribute the poor perfor-
mance to the fact that the models were trained on non-
druglike compounds. We propose a new theoretical model for
the prediction of drug solubility based on partitioned molecu-
lar surface areas and lipophilicity. This improved model
shows a good accuracy for the relatively small data set in this
study and does not require the use of the experimentally de-
termined melting point. Further studies will show if the model
is generally applicable to larger data sets of druglike
compounds.

ACKNOWLEDGMENTS

This work was supported by Grant 9478 from The Swed-
ish Medical Research Council, The Swedish Foundation
for Strategic Research, and SmithKline Beecham. We thank
Drs. Chao Pin Lee, Philip Smith, Dominic Ryan, and Harma
Ellens at SmithKline Beecham for discussions and construc-
tive criticism.

REFERENCES

1. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeny.
Experimental and computational approaches to estimate solubil-
ity and permeability in drug discovery and development settings.
Adv. Drug Deliv. Rev. 23:3–25 (1997).

2. A. Avdeef. pH-metric solubility. 1. Solubility-pH profiles from
Bjerrum plots. Gibbs buffer and pKa in the solid state. Pharm.
Pharmacol. Commun. 4:165–178 (1998).

3. L. Pan, Q. Ho, K. Tsutsui, and L. Takahashi. Comparison of
chromatographic and spectroscopic methods used to rank com-
pounds for aqueous solubility. J Pharm. Sci. 90:521–529 (2001).

Table III. Important Descriptors for Solubility Predictions by PLSa

No. Theoretical Model Semiexperimental

1 total SA total SA
2 SA of H bound to N mp
3 %neutral H of total SA ClogP
4 saturated NPSA saturated NPSA
5 ClogP SA of H bound to N
6 SA of sp3 hybridized C SA of sp3 hybridized C
7 %S of total SA %neutral H of total SA
8 %S of total SA

a List of descriptors in order of importance (descending) for the PLS
solubility prediction using a theoretical model (Table II, model 5)
and a semiexperimental model (Table II, model 9).

Fig. 3. Prediction of aqueous solubility of the data set using PLS
methodology. The compounds were divided into a training set (•) and
a test set (C). The descriptors used for prediction were (a) partitioned
total surface areas, composite surface areas, and ClogP and (b) par-
titioned total surface areas, composite surface areas, ClogP, and melt-
ing point.

Prediction of Aqueous Drug Solubility 187



4. Absolv solute property prediction version 1.2. For further infor-
mation: http://www.sirius-analytical.com/absolv.htm.

5. W. L. Jorgensen and E. M. Duffy. Prediction of drug solubility
from Monte Carlo simulations. Bioorg. Med. Chem. Lett. 10:
1155–1158 (2000).

6. S. H. Yalkowsky and S. Banerjee. Aqueous Solubility: Methods
of Estimation for Organic Compounds. S. H. Yalkowsky and
S. Banerjee, editors. Marcel Dekker Inc., New York, 1992.

7. FDA. Guidance for Industry. Waiver of in vivo bioavailability
and bioequivalence studies for immediate-release solid oral
dosage forms based on a biopharmaceutics classification system.
For further information: http://www.fda.gov/cder/guidance/
index.htm.

8. S. Venkatesh, J. Li, Y. Xu, R. Vishnuvajjala, and B. D. Anderson.
Intrinsic solubility estimation and pH-solubility behaviour of co-
salane (NSC 658586), an extremely hydrophobic diprotic acid.
Pharm. Res. 13:1453–1459 (1996).

9. D. Roy, F. Ducher, A. Laumain, and J. Y. Legendre. Determi-
nation of the aqueous solubility of drugs using a convenient 96-
well plate-based assay. Drug Dev. Ind. Pharm. 27:107–109 (2001).

10. W. M. Meylan, P. H. Howard, and R. S. Boethling. Improved
method for estimating water solubility from octanol/water parti-
tion coefficient. Environ. Toxicol. Chem. 15:100–106 (1996).

11. M. H. Abraham and J. Le. The correlation and prediction of the
solubility of compounds in water using an amended solvation
energy relationship. J. Pharm. Sci. 88:868–880 (1999).

12. J. W. McFarland, A. Avdeef, C. M. Berger, and O. A. Raevsky.
Estimating the water solubilities of crystalline compounds from
their chemical structures alone. J. Chem. Inf. Comput. Sci.
41:1355–1359 (2001).

13. J. Huuskonen, M. Salo, and J. Taskinen. Aqueous solubility pre-
diction of drugs based on molecular topology and neural network
modeling. J. Chem. Inf. Comput. Sci. 38:450–456 (1998).

14. B. E. Mitchell and P. C. Jurs. Prediction of aqueous solubility of
organic compounds from molecular structure. J. Chem. Inf. Com-
put. Sci. 38:489–496 (1998).

15. P. B. Myrdal, A. M. Manka, and S. H. Yalkowsky. Aquafac 3:
aqueous functional group activity coefficients; application to the
estimation of aqueous solubility. Chemosphere 30:1619–1637
(1995).

16. M. Mizutani. Die Dissoziation der schwachen Elektrolyte in wäs-
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